

Crystal Digital PCR® Assay

Information Sheet

For Research Use Only. Not for use in diagnostic procedures.

Product Name

KRAS (Q61, Q61H, Q61L) Crystal Digital PCR® Assay (R51040)

Description

Detected Targets

Targets	Sample Type	Detection Channels	Multiplex
KRAS Q61-Q61H-Q61L	DNA	Blue/Green/Red	3

The KRAS (Q61, Q61H, Q61L) Crystal Digital PCR® Assay is a 10X assay designed to detect and quantify 1 mutation in the KRAS gene, exon 3, using the Ruby Chip. KRAS is pivotal in regulating cell signaling pathways implicated in cancer development, notably melanoma and colorectal cancer.

Assay configuration

The table below indicates with a "X" which channel(s) are used for each target in the assay:

Targets	Base changes	Blue	Teal	Green	Yellow	Red	Infra-Red	Long- Shift
Wild-type (WT) KRAS Q61	N/A	X						
KRAS Q61H	c.183A>C			X				
KRAS Q61L	c.182A>T					Х		

Components

KRAS (Q61, Q61H, Q61L) Crystal Digital PCR® Assay comprises two reagents: a pool of the assay specific primers and Crystal Flex Probes and a Positive Control. Please refer to the lot specific Certificate of Conformity for characterized concentration, available for download at the Technical Resources section of the Stilla Technologies website.

Component Name	Reference	Concentration	Description
KRAS Q61,Q61H,Q61L Crystal Digital PCR® Assay	R51040	10X	Detects 2 mutations in the KRAS gene, exon 3
KRAS Positive Control	R51040.PC0	50X	Contains: hgDNA, Synthetic KRAS mutants (Q61H & Q61L)

Thermocycling Programs

On the naica® system:

Step		Ramp rate
Step 1	Partition for Ruby Chip	-
Step 2	Temperature 95°C for 180 seconds	1°C/sec
Step 3	Begin Loop for 60 Iterations	-
Step 3.1	Temperature 95°C for 15 seconds	1°C/sec
Step 3.2	ep 3.2 Temperature 58°C for 30 seconds	
Step 4	Release for Ruby Chip	-

On the Nio™ Digital PCR:

Step		Ramp rate
Step 1	Partition for Ruby Chip	-
Step 2	Temperature 95°C for 180 seconds	1°C/sec
Step 3	Begin Loop for 60 Iterations	-
Step 3.1	Temperature 95°C for 15 seconds	2°C/sec
Step 3.2	Temperature 60°C for 30 seconds	2°C/sec
Step 4	Temperature 58°C for 300 seconds	1°C/sec
Step 5	Release for Ruby Chip	-

Image Acquisition

Download the dedicated scanning file from the Technical Resources section of the Stilla Technologies website:

- ScanningTemplate_Prism3_KRAS_R51040.ncx (3-color naica® system)
- ScanningTemplate_Prism6_KRAS_R51040.ncx (6-color naica® system)
- NioProtocol_3C-60X-60°C-30s.nioprotocol (Nio™ Digital PCR)
- NioAssay_3C_KRAS_R51040.nioassay (Nio™ Digital PCR)

Image Analysis

The following files are embedded in the dedicated scanning files listed above:

- CompensationMatrix_Prism3_KRAS_R51040.ncm (3-color naica® system)
- UniversalCompMatrix_3C_Prism6-Nio.ncm (6-color naica® system, Nio[™] Digital PCR)
- AnalysisConfiguration_KRAS_R51040.nca (all systems)

Consumables Required but Not Provided

- Ruby Chip (C16011)
- naica® PCR MIX 10X (R10106)
- Crystal Universal Reporters 3 (R41401 200 reactions, R41402 1000 reactions)
- Nuclease-free water

Instruction for PCR Mix Preparation

Specific instructions for preparing the PCR mix are given below.

Reagent Name	Initial Concentration	Final Concentration	Volume per reaction (µL)
naica® PCR MIX Buffer A	10x	1x	0.60
naica® PCR MIX Buffer B	100%	4%	0.24
Crystal Digital PCR® Assay	10x	1x	0.60
Crystal Universal Reporter Tube A O	40x	1x	0.15
Nuclease-free water	NA	NA	Variable
Template DNA	NA	NA	Variable
or Positive Control O	10x	1x	0.60
Total reaction volume (μL)			6.0

Representative Data and Instructions for Analysis

Set thresholds for separating positive and negative populations on the 1D plots. To optimize the analysis, the blue and the red threshold should be set just at approximately equal distance from the positive and negative clusters. Examples of results obtained on the 3-color naica® system are given below.

Wet lab testing was carried out using genomic hgDNA and H₂O as negative controls and a positive control consisting of hgDNA and 2 synthetic KRAS mutants (Q61L, Q61H).

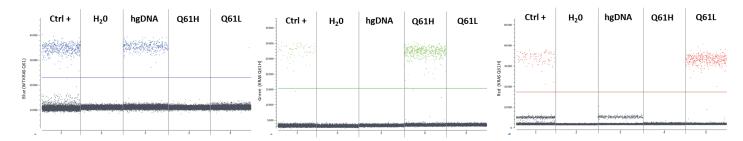


Figure 1: 1D plots obtained during wet lab testing on the 3-color naica® system. The thresholds are set at approximately equal distance from the positive and negative clusters. Remark: a slight non-specificity of the KRAS Q61L probe for hgDNA might be visible.

Registered names and trademarks used in this document, even when not specifically marked, are not to be considered unprotected by law.

