

Crystal Digital PCR® Assay

Information Sheet

For Research Use Only. Not for use in diagnostic procedures.

Product Name

ESR1 (17 mutations) Crystal Digital PCR® Assay (R51011)

Description

Detected Targets

Targets	Sample Type	Detection Channels	Multiplex
ESR1 17 mutations	DNA	Blue/Teal/Green/ Yellow/Red/Infra-Red/LSSD	18

ESR1 (17 mutations) Crystal Digital PCR® Assay is a 10X assay designed to detect and quantify 17 mutations in the ESR1 gene using the Ruby Chip. ESR1 is pivotal in mediating resistance to endocrine therapy in metastatic hormone-positive breast cancer.

Multiplexing Strategy: Color-Combination

This assay relies on the Color-Combination multiplexing strategy proprietary to Stilla Technologies, in which each target is detected, differentiated, and quantified by Crystal Digital PCR® using 2 fluorophores.

The table below indicates with a "X" which channel(s) are used for each target in the assay:

Target	Exon	Base changes	Blue	Teal	Green	Yellow	Red	Infra- Red	Long- Shift
ESR1 exon 8 reference	8	N/A							Х
E380Q	5	c.1138G>C		X		Х			
V422del	6	c.1265_1267del	Χ					X	
S463P	7	c.1387T>C		X			Χ		
D538G	8	c.1613A>G			X	Х			Х
D538N	8	c.1612G>A	Х				Х		Х
L536H	8	c.1607T>A				Х		×	Х
L536P	8	c.1607T>C				Х	Х		Х
L536Q_delinsAG	8	c.1607_1608delinsAG	Χ	X					Х
L536R	8	c.1607T>G		X	X				Х
Y537C	8	c.1610A>G					Χ	X	Х
Y537D	8	c.1609T>G		X				X	Х
Y537H	8	c.1609T>C	Х			Х			Х
Y537N	8	c.1609T>A			X			X	Х
Y537N_delinsTA	8	c.1608_1609delinsTA	Х		X				Х
Y537S	8	c.1610A>C			х		Х		Х
Y537S_delinsAG	8	c.1609_1610delinsAG					Χ		Х
Y537S_delinsCA	8	c.1610_1611delinsCA					Х		Х

Remark: ESR1_Y537S_delinsAG and ESR1_ Y537S_delinsAG are co-detected in the Red channel and cannot be differentiated.

Components

ESR1 (17 mutations) Crystal Digital PCR® Assay comprises two reagents: a pool of the assay specific primers and Crystal Flex Probes and a Positive Control. Please refer to the lot specific Certificate of Conformity for characterized concentration, available for download at the Technical Resources section of the Stilla Technologies website.

Component Name	Reference	Concentration	Description
ESR1 (17mutations) Crystal Digital PCR® Assay	R51011	10X	Detects 17 mutations in the ESR1 gene
ESR1 (17 mutations) Positive Control	R51011.PC0	10X	Contains: hgDNA + synthetic mutant sequences (17 mutations)

Thermocycling Programs

On the Nio™ Digital PCR:

Step		Ramp rate
Step 1	Partition for Ruby Chip	-
Step 2	Temperature 95°C for 180 seconds	1°C/sec
Step 3	Begin Loop for 60 Iterations	-
Step 3.1	Temperature 95°C for 15 seconds	2°C/sec
Step 3.2	Temperature 62°C for 45 seconds	2°C/sec
Step 4	Temperature 58°C for 300 seconds	1°C/sec
Step 5	Release for Ruby Chip	-

Image Acquisition

Download the dedicated scanning file from the Technical Resources section of the Stilla Technologies website:

- NioProtocol_7C-60X-62°C-45s.nioprotocol (Nio™ Digital PCR)
- NioAssay_7C_ESR1_51011.nioassay (Nio™ Digital PCR)

Image Analysis

The following files are embedded in the dedicated scanning files listed above:

- CompensationMatrix_Nio_ESR1_51011.ncm (Nio™ Digital PCR)
- AnalysisConfiguration_ESR1_51011.nca (all systems)

Consumables Required but Not Provided

- Ruby Chip (C16011)
- naica® PCR MIX 10X (R10106)
- Universal Reporters 7 (R42401 200 reactions, R42402 1000 reactions)
- Nuclease-free water

Instruction for PCR Mix Preparation

Specific instructions for preparing the PCR mix are given below.

Reagent Name	Initial Concentration	Final Concentration	Volume per reaction (µL)
naica® PCR MIX Buffer A	10x	1x	0.60
naica® PCR MIX Buffer B	100%	4%	0.24
Crystal Digital PCR® Assay	10x	1x	0.60
Crystal Universal Reporter Tube A	40x	1x	0.15
Crystal Universal Reporter Tube B	40x	1x	0.15
Nuclease-free water	NA	NA	Variable
Template DNA	NA	NA	Variable
or Positive Control	10x	1x	0.60
	6.0		

Representative Data and Instructions for Analysis

Set thresholds for separating positive and negative populations on the 1D plots. To optimize the analysis, the thresholds should be set at approximately equal distance from the positive and negative clusters for all the channels except for the Long Shift channel, for which the threshold should be set just above the negative group. Examples of results obtained on the Nio™+ system are given below.

Wet lab testing was carried out using human genomic DNA (hgDNA) and H₂O negative controls and a positive control consisting of hgDNA and the 17 synthetic mutant target sequences. Synthetic mutant target sequences were also tested individually.

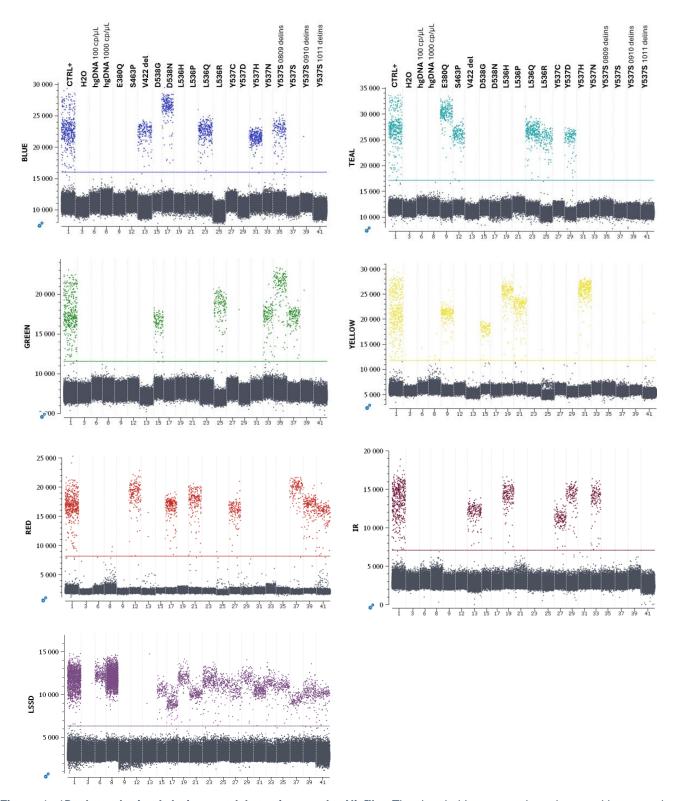


Figure 1: 1D plots obtained during wet lab testing on the Nio™+. The thresholds are set, based on positive control, at approximately equal distance from the positive and negative clusters.

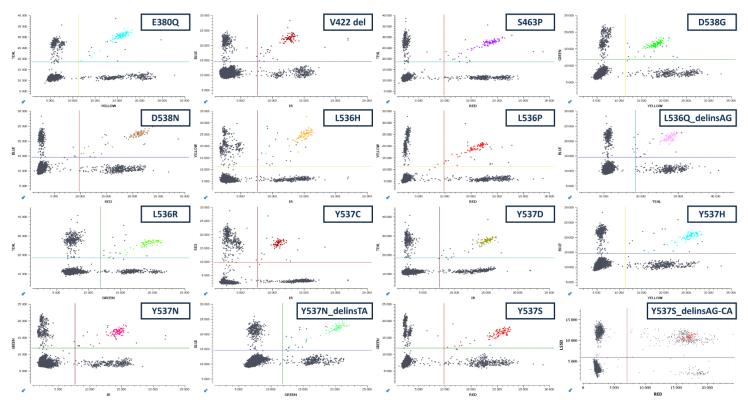


Figure 2: 2D plots obtained with the positive control during wet lab testing on the Nio™+. Each ESR1 mutation can be visualized as a double-positive population.

Registered names and trademarks used in this document, even when not specifically marked, are not to be considered unprotected by law.

