

# **Crystal Digital PCR® Assay**

#### Information Sheet

For Research Use Only. Not for use in diagnostic procedures.

#### **Product Name**

NRAS (G12, G12D) Crystal Digital PCR® Assay (R51033)

# **Description**

#### **Detected Targets**

| Targets        | Sample Type | Detection Channels | Multiplex |
|----------------|-------------|--------------------|-----------|
| NRAS G12, G12D | DNA         | Blue/Red           | 2         |

The NRAS (G12, G12D) Crystal Digital PCR® Assay is a 10X assay designed to detect and quantify 1 mutation in the NRAS gene using the Ruby Chip. NRAS is pivotal in regulating cell signaling pathways implicated in cancer development, notably melanoma and colorectal cancer.

#### **Assay Configuration**

The table below indicates with a "X" which channel(s) are used for each target in the assay:

| Targets                        | Base changes | Blue | Teal | Green | Yellow | Red | Infra-Red | Long-<br>Shift |
|--------------------------------|--------------|------|------|-------|--------|-----|-----------|----------------|
| Wild-type (WT)<br>NRAS G12-G13 | N/A          | X    |      |       |        |     |           |                |
| NRAS G12D                      | c.35G>A      |      |      |       |        | Х   |           |                |

#### Components

NRAS (G12, G12D) Crystal Digital PCR® Assay comprises two reagents: a pool of the assay specific primers and Crystal Flex Probes and a Positive Control. Please refer to the lot specific Certificate of Conformity for characterized concentration, available for download at the Technical Resources section of the Stilla Technologies website.

| Component Name                                 | Reference  | Concentration | Description                                                |
|------------------------------------------------|------------|---------------|------------------------------------------------------------|
| NRAS (G12, G12D)<br>Crystal Digital PCR® Assay | R51033     | 10X           | Detects 1 mutation in the NRAS gene                        |
| NRAS Positive Control                          | R51002.PC0 | 10X           | Contains: hgDNA, Synthetic NRAS mutants (G12C, G12D, G13R) |

# **Thermocycling Programs**

#### On the naica® system:

|          | Step                                     | Ramp rate |
|----------|------------------------------------------|-----------|
| Step 1   | Partition for Ruby Chip                  | -         |
| Step 2   | Temperature 95°C for 180 seconds         | 1°C/sec   |
| Step 3   | Begin Loop for 60 Iterations             | -         |
| Step 3.1 | Temperature 95°C for 15 seconds          | 1°C/sec   |
| Step 3.2 | Step 3.2 Temperature 58°C for 30 seconds |           |
| Step 4   | Release for Ruby Chip                    | -         |

#### On the Nio™ Digital PCR:

|          | Ramp rate                               |         |
|----------|-----------------------------------------|---------|
| Step 1   | Partition for Ruby Chip                 | -       |
| Step 2   | Temperature 95°C for 180 seconds        | 1°C/sec |
| Step 3   | Begin Loop for 60 Iterations            | -       |
| Step 3.1 | Temperature 95°C for 15 seconds         | 2°C/sec |
| Step 3.2 | Temperature 60°C for 30 seconds         | 2°C/sec |
| Step 4   | Step 4 Temperature 58°C for 300 seconds |         |
| Step 5   | Release for Ruby Chip                   | -       |

# **Image Acquisition**

Dedicated scanning file are available on request:

- ScanningTemplate\_Prism3\_NRAS\_R51033.ncx (3-color naica® system)
- ScanningTemplate\_Prism6\_NRAS\_R51033.ncx (6-color naica® system)
- NioProtocol\_3C-60X-60°C-30s.nioprotocol (Nio™ Digital PCR)
- NioAssay\_3C\_NRAS\_R51033.nioassay (Nio™ Digital PCR)

# **Image Analysis**

The following files are embedded in the dedicated scanning files listed above:

- CompensationMatrix\_Prism3\_NRAS\_R51033.ncm (3-color naica® system)
- CompensationMatrix\_Prism6\_NRAS\_R51033.ncm (6-color naica® system)
- CompensationMatrix\_Nio\_NRAS\_R51033.ncm (Nio™ Digital PCR)
- AnalysisConfiguration\_NRAS\_R51033.nca (all systems)

### **Consumables Required but Not Provided**

- Ruby Chip (C16011)
- naica® PCR MIX 10X (R10106)
- Crystal Universal Reporters 3 (R41401 200 reactions, R41402 1000 reactions)
- Nuclease-free water



# **Instruction for PCR Mix Preparation**

Specific instructions for preparing the PCR mix are given below.

| Reagent Name                      |     | Initial Concentration | Final<br>Concentration | Volume per reaction (µL) |
|-----------------------------------|-----|-----------------------|------------------------|--------------------------|
| naica® PCR MIX Buffer A           | •   | 10x                   | 1x                     | 0.60                     |
| naica® PCR MIX Buffer B           | •   | 100%                  | 4%                     | 0.24                     |
| Crystal Digital PCR® Assay        | •   | 10x                   | 1x                     | 0.60                     |
| Crystal Universal Reporter Tube A | 0   | 40x                   | 1x                     | 0.15                     |
| Nuclease-free water               |     | NA                    | NA                     | Variable                 |
| Template DNA                      |     | NA                    | NA                     | Variable                 |
| or Positive Control               | 0   | 10x                   | 1x                     | 0.60                     |
|                                   | 6.0 |                       |                        |                          |

# Representative Data and Instructions for Analysis

Set thresholds for separating positive and negative populations on the 1D plots. To optimize the analysis, the thresholds should be set at approximately equal distance from the positive and negative clusters. Examples of results obtained on the Nio™+ are given below. Remark: The threshold can be adjusted on each individual chamber to optimize its placement.

Wet lab testing was carried out using genomic hgDNA as a negative control and a positive control consisting of hgDNA and synthetic NRAS mutants (G12C, G12D, G13R). Synthetic NRAS mutants were also tested individually (G12C, G12D, G13R).

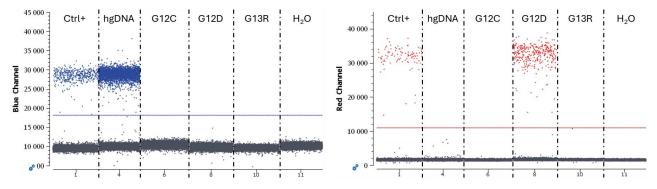



Figure 1: 1D plots obtained during wet lab testing on the Nio™+. The thresholds are set at approximately equal distance from the positive and negative clusters.



Registered names and trademarks used in this document, even when not specifically marked, are not to be considered unprotected by law.

