

Crystal Digital PCR® Assay

Information Sheet

For Research Use Only. Not for use in diagnostic procedures.

Product Name

HPV (ALB, HPV16/18/31/33/35/39/45/51/52/56/58) Crystal Digital PCR® Assay (R52000)

Description

Detected Targets

Targets	Sample Type	Detection Channels	Multiplex
HPV (ALB, HPV16/18/31/33/35/39/45/51/52/56/58)	DNA	Blue/Teal/Green/Yellow/Red/Infra-Red	12

The HPV (ALB, HPV16/18/31/33/35/39/45/51/52/56/58) Crystal Digital PCR® Assay is a 10X assay designed to detect and quantify 11 high risk HPV genotypes for cervical cancer plus a reference gene for human DNA quantification using the Ruby Chip.

Multiplexing Strategy: Color-Combination

This assay relies on the Color-Combination multiplexing strategy proprietary to Stilla Technologies, in which targets are detected, differentiated, and quantified by Crystal Digital PCR® using 2 fluorophores.

The table below indicates with a "X" which channel(s) are used for each target in the assay:

Targets	Blue	Teal	Green	Yellow	Red	Infra-Red	Long-Shift
ALB (human REF gene)	Х						
HPV16		Х			Х		
HPV18			Х	Х			
HPV31		Х	Х				
HPV33	Х				Х		
HPV35		Х				Х	
HPV39		Х		Х			
HPV45			Х		Х		
HPV51			Х			Х	
HPV52				Х		Х	
HPV56					Х	Х	
HPV58	Х			Х			

Components

HPV (ALB, HPV16/18/31/33/35/39/45/51/52/56/58) Crystal Digital PCR® Assay comprises two reagents: a pool of the assay specific primers and Crystal Flex Probes and a Positive Control. Please refer to the lot specific Certificate of Conformity for characterized concentration, available for download at the Technical Resources section of the Stilla Technologies website.

Component Name	Reference	Concentration	Description
HPV (ALB, HPV16/18/31/33/35/39/45/51/52/56/58) Crystal Digital PCR® Assay	R52000	10X	Detects 11 high risk HPV genotypes for cervical cancer plus a reference gene for human DNA.
HPV Positive Control	R52000.PC0	10X	Contains: hgDNA, Synthetic HPV (16/18/31/33/35/39/45/51/52/56/58)

Thermocycling Programs

On the naica® system:

Step		Ramp rate
Step 1	Partition for Ruby Chip	-
Step 2	Temperature 95°C for 180 seconds	1°C/sec
Step 3	Begin Loop for 60 Iterations	-
Step 3.1	Temperature 95°C for 15 seconds	1°C/sec
Step 3.2	Temperature 60°C for 60 seconds	1°C/sec
Step 4	Temperature 58°C for 300 seconds	1°C/sec
Step 5	Release for Ruby Chip	-

On the Nio[™] Digital PCR:

Step		Ramp rate
Step 1	Partition for Ruby Chip	-
Step 2	Temperature 95°C for 180 seconds	1°C/sec
Step 3	Begin Loop for 60 Iterations	-
Step 3.1	Temperature 95°C for 15 seconds	2°C/sec
Step 3.2	Temperature 62°C for 60 seconds	2°C/sec
Step 4	Temperature 58°C for 300 seconds	1°C/sec
Step 5	Release for Ruby Chip	-

Image Acquisition

Download the dedicated scanning file from the Technical Resources section of the Stilla Technologies website:

- ScanningTemplate_Prism6_HPV12_R52000.ncx (6-color naica® system)
- NioProtocol_6C-60X-62°C-60s.nioprotocol (Nio™ Digital PCR)

• NioAssay_6C_HPV12_R52000.nioassay (Nio™ Digital PCR)

Image Analysis

The following files are embedded in the dedicated scanning files listed above:

- CompensationMatrix_Prism6_HPV12_R52000.ncm (6-color naica® system)
- CompensationMatrix_Nio_HPV12_R52000.ncm (Nio[™] Digital PCR)
- AnalysisConfiguration_HPV12_R52000.nca (all systems)

Consumables Required but Not Provided

- Ruby Chip (C16011)
- naica® PCR MIX 10X (R10106)
- Universal Reporters 7 (R42401 200 reactions, R42402 1000 reactions)
- Nuclease-free water

Instruction for PCR Mix Preparation

Specific instructions for preparing the PCR mix are given below.

Reagent Name	Initial Concentration	Final Concentration	Volume per reaction (µL)
naica® PCR MIX Buffer A	10x	1x	0.60
naica® PCR MIX Buffer B	100%	4%	0.24
Crystal Digital PCR® Assay	10x	1x	0.60
Crystal Universal Reporter Tube A	40x	1x	0.15
Crystal Universal Reporter Tube B	40x	1x	0.15
Nuclease-free water	NA	NA	Variable
Template DNA	NA	NA	Variable
or Positive Control O	10x	1x	0.60
	6.0		

Representative Data and Instructions for Analysis

Set thresholds for separating positive and negative populations on the 1D plots.

The thresholds should be set at approximately equal distance from the positive and negative clusters. Examples of results obtained on the Prism6 system are given below.

Wet lab testing was carried out using human genomic DNA (hgDNA) as a negative control and a positive control (Ctl+) consisting of hgDNA and 11 synthetic HPV subtypes (HPV16/18/31/33/35/39/45/51/52/56/58). Each HPV DNA was also tested individually to confirm the specificity of the assay (Figure 1).

Figure 1: 1D plots obtained during wet lab testing on the Prism6. The blue threshold is set just above the negative cluster, while the five other thresholds are set at approximately equal distance from the positive and negative clusters.

Stilla Technologies F-94800 Villejuif, FRANCE

Registered names and trademarks used in this document, even when not specifically marked, are not to be considered unprotected by law.

